As you may understand acid rain reduces aquatic environmental pH to “low pH levels” as indicted in the chart below, and these ranges can be quite detrimental to aquatic life.

While water guidelines in general suggest a lake’s pH will fall between 6.0 and 9.0 these ranges are not necessarily the ideal pH ranges for aquatic life.

In all cases, most fish and higher life forms, i.e., aquatic food web members, will do much better in ponds and lakes with a pH at or above 7.0.

  • Ponds with a pH less than 6.0, or a pH of 6, may result in stunted, reduced or even absent fish populations.
  • The answer to acid rain is to apply agriculture lime to any aquatic environment with a pH of less than a pH of 7.0.
  • A typical Ag liming rate is 2 tons per surface acre of lake.
  • Adjust the ag lime addition rate based on the pH obtained.
  • Adding more than the recommended lime (agricultural lime only) will not harm the pond/lake.
  • Keep in mind this is not lime, it is agriculture lime, called “lime stone”.
  • Its addition increases and buffers water chemistry.

ACID RAIN INFORMATION

Effects of Acid Rain

The Effects of Acid Rain on Ecosystems

This picture illustrates the pH level at which key organisms may be lost as their environment becomes more acidic.

Not all fish, shellfish, or the insects that they eat can tolerate the same amount of acid.

An ecosystem is a community of plants, animals and other organisms along with their environment including the air, water and soil. Everything in an ecosystem is connected. If something harms one part of an ecosystem – one species of plant or animal, the soil or the water – it can have an impact on everything else.

Effects of Acid Rain on Fish and Wildlife

The ecological effects of acid rain are most clearly seen in aquatic environments, such as streams, lakes, and marshes where it can be harmful to fish and other wildlife. As it flows through the soil, acidic rain water can leach aluminum from soil clay particles and then flow into streams and lakes. The more acid that is introduced to the ecosystem, the more aluminum is released.

Some types of plants and animals are able to tolerate acidic waters and moderate amounts of aluminum. Others, however, are acid-sensitive and will be lost as the pH declines. Generally, the young of most species are more sensitive to environmental conditions than adults. At pH 5, most fish eggs cannot hatch. At lower pH levels, some adult fish die. Some acidic lakes have no fish. Even if a species of fish or animal can tolerate moderately acidic water, the animals or plants it eats might not. For example, frogs have a critical pH around 4, but the mayflies they eat are more sensitive and may not survive pH below 5.5.

Effects of Acid Rain on Plants and Trees

Dead or dying trees are a common sight in areas affected by acid rain. Acid rain leaches aluminum from the soil.  That aluminum may be harmful to plants as well as animals. Acid rain also removes minerals and nutrients from the soil that trees need to grow.

At high elevations, acidic fog and clouds might strip nutrients from trees’ foliage, leaving them with brown or dead leaves and needles. The trees are then less able to absorb sunlight, which makes them weak and less able to withstand freezing temperatures.

Buffering Capacity

Many forests, streams, and lakes that experience acid rain don’t suffer effects because the soil in those areas can buffer the acid rain by neutralizing the acidity in the rainwater flowing through it. This capacity depends on the thickness and composition of the soil and the type of bedrock underneath it. In areas such as mountainous parts of the Northeast United States, the soil is thin and lacks the ability to adequately neutralize the acid in the rain water. As a result, these areas are particularly vulnerable and the acid and aluminum can accumulate in the soil, streams, or lakes.

Episodic Acidification

Melting snow and heavy rain downpours can result in what is known as episodic acidification. Lakes that do not normally have a high level of acidity may temporarily experience effects of acid rain when the melting snow or downpour brings greater amounts of acidic deposition and the soil can’t buffer it. This short duration of higher acidity (i.e., lower pH) can result in a short-term stress on the ecosystem where a variety of organisms or species may be injured or killed.

Nitrogen Pollution

It’s not just the acidity of acid rain that can cause problems. Acid rain also contains nitrogen, and this can have an impact on some ecosystems. For example, nitrogen pollution in our coastal waters is partially responsible for declining fish and shellfish populations in some areas. In addition to agriculture and wastewater, much of the nitrogen produced by human activity that reaches coastal waters comes from the atmosphere.

Effects of Acid Rain on Materials

Not all acidic deposition is wet. Sometimes dust particles can become acidic as well, and this is called dry deposition. When acid rain and dry acidic particles fall to earth, the nitric and sulfuric acid that make the particles acidic can land on statues, buildings, and other manmade structures, and damage their surfaces. The acidic particles corrode metal and cause paint and stone to deteriorate more quickly. They also dirty the surfaces of buildings and other structures such as monuments.

The consequences of this damage can be costly:

  • damaged materials that need to be repaired or replaced,
  • increased maintenance costs, and
  • loss of detail on stone and metal statues, monuments and tombstones.

 

Other Effects of SO2 and NOX

Visibility

In the atmosphere, SO2 and NOX gases can be transformed into sulfate and nitrate particles, while some NOX can also react with other pollutants to form ozone. These particles and ozone make the air hazy and difficult to see through. This affects our enjoyment of national parks that we visit for the scenic view such as Shenandoah and the Great Smoky Mountains.

Human Health

Walking in acid rain, or even swimming in a lake affected by acid rain, is no more dangerous to humans than walking in normal rain or swimming in non-acidic lakes. However, when the pollutants that cause acid rain —SO2 and NOX, as well as sulfate and nitrate particles— are in the air, they can be harmful to humans.

SO2 and NOX react in the atmosphere to form fine sulfate and nitrate particles that people can inhale into their lungs.  Many scientific studies have shown a relationship between these particles and effects on heart function, such as heart attacks resulting in death for people with increased heart disease risk, and effects on lung function, such as breathing difficulties for people with asthma.

Learn more about:

In addition, NOX emissions also contribute to ground level ozone, which is also harmful to human health.

Regards

Doug Dent